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Abstract: On the basis of hereditary mechanics of solids relations methods of constitutive equations construction have been sug-

gested. The main relations of algebra of resolvent operators are presented. Interrelation of number of material functions characteris-
ing rheological properties of carbon fibre reinforced composite laminates has been shown. With the help of identification methods 
the parameters of the constitutive equations were calculated which allow describing creep, relaxation and variable loading of speci-
mens of carbon fibre reinforced composite laminates. The satisfactory agreement of predicted and experimental data was obtained. It 
is possible within the scope of the approach to take into account the influence of nonlinear properties on time-dependent behaviour of 
carbon fibre reinforced plastics. 
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1. Introduction 
 

Structural members of carbon fibre reinforced composites 
are widely used in aerospace applications and are of great 
importance in describing the main regularities of time-
dependent behavior of the laminates. It is obvious that 
time-dependent properties of fibrous laminated compo-
sites, to a large extent, are defined by the properties of 
polymer matrix and its adhesion to the fibre and appear 
under off-axis loading. To estimate time-dependent be-
haviour of carbon-fibre reinforced laminated composites, 
analysis of creep strain of angle ply composites to has 
been performed (Charentenay and Zaidi, 1982), (Deng et 
all, 2003), (Ma et all, 1997), (Potter, 1974). The most 
pronounced effect of creep is on the test of [±45] lay-up 
which is obviously connected with shear properties in the 
plane layer. In particular, an analysis of the experimental 
data of tensile loading of [±45] 2s lay-up carbon fibre rein-
forced samples has shown that rheological and nonlinear 
properties were determined by shear properties in the 
plane of the layer (Charentenay and Zaidi, 1982), (Potter, 
1974) and creep strain was approximated by the Findley 
equation (Findley et al., 1976) by using power approxi-
mation. The power approximation was used in (Cha-
rentenay and Zaidi, 1982), (Deng et al., 2003), (Guedes et 
al., 1998), (Ma et al., 1997) creep of carbon-epoxy 
[±45]2s was approximated by power function. Also, in 
order to satisfy some physical restrictions the time expo-
nent parameter of the equation must lie between 0 and 1. 
Moreover, for carbon fibre reinforced composite lami-
nates the parameter is close 0.1. Time-dependent proper-
ties are also dependent on strain rate (Guedes et al., 
1998), (Hsiao and Daniel, 1998), (Potter, 1974). Constitu-
tive equations of viscoelasticity allow analysis of the in-
terrelation of time-dependent behaviour under different 
histories of loading (Dumansky and Strekalov, 1999), 
(Korontzis and Vellios, 2000), (Oza et all, 2003). The 
first stage of viscoelastic behaviour investigation is the 

estimation of elastic properties of the material. Elastic 
body strain instantly follows the stress and their time de-
pendencies are similar. In the viscoelastic body, the effect 
of retardation takes place and is of great importance in 
dividing elastic and time-dependent strain. In measuring 
elastic properties we shall reduce the amount of time-
dependent strain decreasing the time of loading and fol-
low (Potter, 1974) to determine elastic characteristics that 
are necessary to load the specimen to failure within a few 
seconds. It should be noted that the elastic characteristics 
do not coincide with the characteristics defined under 
quasi-static loading. 
When predicting the mechanical properties of carbon-
fibre reinforced composite laminate, as a base are the 
properties of the layer. The majority of the papers of 
World-Wide Failure Exercise (ed: V.J. Hinton et al., 
2004) devoted to mechanical behaviour of polymer com-
posites under quasi-static loading are based on elastic 
properties of the layer and classical lamination theory 
relations. The inverse problem concluding in defining the 
elastic properties of the layer on the base of composite 
laminates experimental data is considered in (Zinoviev 
and Tairova, 1995) in which a method of identification of 
the layer’s elastic properties on angle ply lay-up samples 
testing results. The application of classical lamination 
theory to describe time-dependent behaviour of carbon 
fibre reinforced laminates was considered in (Guedes et 
al., 1998), (Korontzis and Vellios., 2000), (Dumansky 
and Tairova, 2007, 2008). Finally, it is our opinion, that  
particularly promising, is the approach of using heredi-
tary operator representation in constitutive equations. The 
theory of resolvent operators and its application to heredi-
tary solid mechanics is described in (Rabotnov, 1979). 
 
2. Elastic properties of the layer 
 
The tension test of cross-ply carbon reinforced plastics 
based on viscoplastic resin had been the subject of inves-



tigation. Flat specimens of [0] 4, [±20] 2s, [±40] 2s, [±50] 2s, 
[±70] 2s, [90] 4 lay-ups were tested under some triangular 
cycles of quasi-static tensile strain. Stress-strain diagrams 
under quasi-static uniaxial tension with unloading to 0.3-
0.7 of failure stress in longitudinal and transverse direc-
tions were obtained. These diagrams are shown in Fig. 1. 
Elastic moduli and Poisson's ratio were determined with-
in linear range of stress-strain diagrams using identifica-
tion method (Zinoviev and Tairova, 1995). 
All the diagrams apart from [0] 2s, [90] 2s lay-ups revealed 
nonlinear viscoelastic properties especially significant on 
[±40] 2s, [±50] 2s, lay-ups. 
 

 
Fig.1. Stress-strain diagrams for [±40] 2s lay up. 

 
To determine the technical characteristics of the 
layer the minimization of the following residual 
function was performed as follows 

( )( )2exp
1 2 12 12, , , mincalc

k k
k

E E Gε ε ν− →∑  (1) 

The values (Dumansky and Tairova, 2007) appeared to be 
equal: 1 150E =  MPa, 2 3.95E =  MPa, 12 2.39G =  MPa, 

12 0.315ν = . 

 
3. Algebra of resolvent operators 
 
The operator form of the constitutive hereditary equation 
under uniaxial loading can be written in the form 

 ( )* *1 E K Kε σ σ σ= + = + , (2) 

where ( ) ( )*

0

t

K K t dσ τ σ τ τ= −∫ is a kernel of the opera-

tor. 
Constitutive equation (2) (Rabotnov, 1979) can be in-
versed and specified by 

 ( ) ( )* *1E R E Rσ ε ε ε= − = − , (3) 

where operator R∗  is resolvent in relation to the operator 
K ∗ . 
Substituting the expression for σ  from (3) into (2) yields 
the equation for the interrelation between the initial oper-
ator and its resolvent 

 ( ) 1* *1 1K R
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+ = − . (4) 

Solving equation (4) the common expression for the re-
solvent operator can be represented by 
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The series in relation (5) is Neumann series for the resol-
vent (Rabotnov, 1979) Rabotnov's fraction-exponential 
function was obtained as the resolvent of Abel's operator 
using the expression for kernel of the operators’ multipli-
cation 
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For Abel's kernel ( ) ( ) ( )
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the expression for Abel's operator is given by 
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, 1 is a unity function. 

With the aid of formula (6) the power of Abel's operator 
can be written as (Rabotnov, 1979) 
 * *

1
m

m mI Iα α− += . (7) 

Substituting in place of the operator K ∗  in relation of 
Neuman series fraction-exponential function takes the 
following form 
 ( )* * 2 *2 3 *3I I IZα α α αβ β β β− = − + − +… . (8) 

Using (Rabotnov, 1979) the explicit form of Rabotnov's 
fraction-exponential function can be written as 
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where ()Γ  is gamma-function. Series (9) converges at 

0β > . 

These are two main relations of the algebra of fraction-
exponential functions 
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The particular cases of Rabotnov's fraction-exponential 
function are the following: ( )* *0Z Iα α=  is Abel's opera-

tor, ( )*
0Z β−  is exponential operator, and ( )*

0 0Z  is inte-

gration operator. It should be noted that kernel as a sum 
of the exponential functions is also allow a resolvent op-
erator. 
 
4. Constitutive equations 
 
It is well known that viscoelastic material can be identi-
fied the one of the number of material functions. In par-
ticular stress and strain in the viscoelastic material can be 
connected with the aid of Stieltjs convolutions, 
(Rabotnov, 1979) 
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Then under creep and relaxation relations (11) can be 
written as 
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where ( )J t , ( )G t  are creep and relaxation functions. 

Similar to (12) under strain and stress rate loading consti-
tutive equations take the following form 
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Using relations (12) and (13) we can describe strain and 
stress under piecewise loading. For loading which can be 
defined with the following forms 
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where ( )H  is Heaviside unit function, kσ∆ , kε∆  are 

step-wise change of stress and strain. The corresponding 
change of strain and stress in consequence with (12) 
(Bugakov, 1973) can be represented as 
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Obviously similar relations can be obtained for relations 
(13) 
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There are relations for connection between the material 
functions 
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These are in turn connected with creep and relaxation 
kernels by the following relations 
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5. Creep and relaxation [±40]2s lay-up 

 
Creep and relaxation of plane samples [±40] 2s lay-up 
were made on servo hydraulic testing machine Instron 
8800. In the process of testing longitudinal and transverse 
strain were made on the base of 5 mm in 5 minutes inter-
val. Clearly pronounced creep and relaxation of CFRP 
were observed. The level of load under creep was close to 
limit of elastic strain and equal to 65 MPa. The initial 
level strain of the relaxation was equal to 0.5%. 
Experimental data were analyzed and treated to describe 
creep curve of [±40] 2s lay-up. Similar to (Charentenay 
and Zaidi, 1981) power law representing Abel’s kernel of 
the constitutive equation was taken. The linear constitu-
tive hereditary equation with Abels’s kernel is given by 

 ( ) ( )
0

1
1t kI

E αε σ∗= + , (19) 

where 0E  is instant modulus, k , α  are parameters of 

the equation. In case of creep constitutive equation (19) 
can be rewritten as 

 ( ) ( ) ( )
1

0 01 1
2

k
t kI t α

αε ε ε
α

∗ + 
= + = +  Γ + 

, (20) 

where 0ε  is instant elastic strain. The parameters of the 

constitutive equation were calculated by minimizing of 
the following expression 

 ( )( )2exp
0, , mincalc

k k
k

E kε ε α− →∑ . (21) 

The parameters are as follow: 0 19900E =  MPa, 

0.894α = − , 0.873k =  min-(1+α). The prediction of creep 
strain shown in Fig. 2 is satisfactory. 
 

 
Fig. 2. 

 
Using the above calculated parameter values the relaxa-
tion curve was obtained. The experimental values and 
predicted curve are shown in Fig. 3. 

 
Fig. 3. 

 
The linear constitutive equation is obtained by use of 
relation (10) and can be written as 
 



 ( )( )0 1E kZ kασ ε∗= − − . (22) 

Using the explicit form of fraction-exponential function 
(9) representation constitutive equation for relaxation is 
as follows 
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6. Time-dependent behaviour under variable loading 
 
Experimental studies under variable loading were per-
formed for [±40] 2s specimens. There were four trapezoi-
dal cycles of strain and the corresponding strain in longi-
tudinal and transverse directions were measured. The 
results of the testing is shown in Fig. 4. 
 

 
Fig. 4. Stress response of [±40] 2s lay up to strain input. 

 
Within the permanent strain ranges there is relaxation of 
stress. Isochronic curves of [±40] 2s lay up are shown in 
Fig 2. In Fig. 2 one can see that hysteresis effects are de-
termined principally by rheological properties. These are 
reflected by vertical parts of the curves in Fig. 5. The 
residual strain determining the shift of the diagrams, to 
some extent, depends on the horizontal shift dependent on 
the time of recovery. 
 

 
Fig. 5. Isochronic curves of carbon fibre reinforced com-

posite laminates [±40] 2s lay up. 
 

To describe stress response under trapezoidal strain input 
it is convenient to represent strain in strain rate~time 
coordinates. 
From all the array of the strain values only eleven points 
were chosen in which the strain values have derivative 
discontinuity. In this case the strain rate is given by 
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And using the second relation from (16) the stress de-
pendence can be described. In the case of Abel’s creep 
kernel, the material function in the constitutive equation 
in (16) is taken as follows 

 ( ) ( )( )t E t Z tας β∗= − − ⋅ . (25) 

By integration of power functions in series (9) it is not 
hard to obtain the explicit form of material function 

( )tς . The explicit form of the operator yields 
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Using constitutive equation (26) and the second equation 
in (16) it is possible to describe the stress-strain diagram 
under loading shown in Fig. 4 
 
. The comparison of experimental data and calculated 
values is presented in Fig. 6. Strain rate increment is as 

follows: 1

1

k k
k

k kt t

ε εε +

+

∆ ∆
∆ = −

∆ ∆
ɺ . 

 
Fig. 6. 

 
The difference in Fig. 5 can be explained by the presence 
of nonlinear effects especially in the second and third 
cycles of loading in which the level of stresses increase 
the linear limit. 
 
7. Nonlinear behaviour 
 
Nonlinear effect can be taken into account by change of 
left part of constitutive equation (2) (Rabotnov, 1979) and 
rewritten as 

 ( ) ( )*1 Kϕ ε σ= + , (27) 

where ( )ϕ ε  is instant strain curve which is defined by 

data treatment. The possible way of its representation is 
as follows 



 ( ) ( ) ( )0 0 1 1E E Hϕ ε ε ε ε ε ε= − ∆ ⋅ − ⋅ − , (28) 

where 0E∆  is change of instant modulus 0E  at strain 1ε . 

Substituting (28) into (27) and by use of (3) the constitu-
tive equation for stress specified by 

 ( ) ( )*
0 0 11E R E Rσ ε ε ε∗= − − ∆ − . (29) 

An application of such approach to carbon fibre rein-
forced composite laminates under quasi-static loading 
was considered in (Dumansky et al., 2011). 
 
8. Results and discussion 
 
The possibility of application of mechanics of hereditary 
solids in describing of time-dependent behaviour of car-
bon fibre reinforced composite laminates was shown. The 
use of algebra of resolvent operators and theory of gener-
alized functions allow significant simplifying the con-
struction the constitutive equations. Fraction-exponential 
function combining properties of power and exponential 
functions can be successfully used to characterize rheo-
logical properties of carbon fibre reinforced composites. 
A systematic investigation was conducted of time-
dependent behaviour of carbon fibre reinforced laminates. 
A preliminary estimation of the singularity parameter α  
which is connected with the time exponent in the Find-
ley’s law is equal to -0.9. The possibility of model gener-
alization to take into account the nonlinear behaviour of 
carbon fibre reinforced composite laminates has been 
shown. 
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