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Abstract  The analytical method of construction of constitutive equations for  composite laminates 
based on algebra of resolvent operators and relations of the classical lamination theory was suggested. On 
the basis of hereditary constitutive equations of the unidirectional layer with elastic behavior in the main 
directions of the orthotropy and viscoelastic behavior under shear the constitutive hereditary equations of 
the laminate can be obtained. The constitutive equations can be expressed by means of stiffness, 
compliance or technical elasticity hereditary operators. The example of construction of the constitutive 
equations was demonstrated on the cross-ply carbon reinforced laminates. 
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INTRODUCTION 
 
Viscoelastic materials can be characterized by a number of interrelation functions such as compliance, 
relaxation and complex moduli [1-3]. Fiber reinforced laminates show evidence of rheological properties 
to a large extent depending on the polymeric matrix properties. It means that rheological properties of the 
laminate are defined by shear properties of the layers. Use of relationships of the classical laminate theory 
to predict viscoelastic properties of the laminates were considered [3-6]. Algebra of resolvent operators 
and its application to composite materials are elaborated [1]. Cross-ply composites show the most 
noticeable viscoelastic properties especially for lay-ups close to 45 degrees, in this case maximum shear 
stresses take place [4,5,7,8]. 
 
ANALYTICAL MODEL 
 
The system of the constitutive equations for the unidirectional lamina characterized in matrix form by the 

only hereditary operator may be presented as [9] 
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where  is instantaneous shear modulus [10], 0
12G K ∗  is a hereditary operator acting on stress as: 
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Relation for stiffness under shear can be obtained with the aid of resolvent of operator  [1]: K ∗
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Matrix of the stiffness for a layer rotated through θ  degrees to abscissa axis is 
( ) [ ][ ][ ]12

T
xyG T G Tθ

θ
⎡ ⎤ =⎣ ⎦ θ ,  (4) 

where [ ]Tθ  is a transition matrix. 

Using the classical laminate theory relationships with the help of relation (2) we can obtain global stiffness 
matrix of the laminate 
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After transformations the global stiffness matrix (5) takes the form: 
0 t

xy xy xyG G G ∗⎡ ⎤ ⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ .  (6) 

If resolvent operator R∗  depends on the parameterμ , with the aid of matrix resolvent the stiffness matrix 
can be inversed to the following relationship [9] 
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where xyS⎡⎣ ⎤⎦  is the laminate compliance matrix, [ ]I  is a unit matrix and [ ]Q  is the auxiliary matrix 

calculated by diagonalization of the matrix multiplication , [ ][ ][ ]1 10 t
xy xyG G Q D Q
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and iβ  are the eigenvalues. 

Expressions for the technical characteristics of hereditary elasticity can be obtained with the help of the 
relationships of the algebra of the resolvent operators [1] 
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The modulus of the laminate can be obtained by inverse of the corresponding component of the 
compliance matrix 
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=  is instantaneous modulus of elasticity. 

The general formulation for Poisson's ratio of the laminate can be derived by consequent use of relations 
(8) and is given in the next form 
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The previously derived relations for technical hereditary characteristics and the other ones can be used for 
describing long term properties of the laminates under various kinds of loading. The form of the 
constitutive equations will depend on the laminate lay-up and kind of the loading. 
 
RESULTS AND VERIFICATION OF THE MODEL 
 
The method of the construction of the constitutive equations was demonstrated on example of cross-ply 
carbon fiber reinforced plastic. The moduli of elasticity and Poisson's ratio were determined by 
identification method [11] on quasistatic tension data of flat specimens of [0]4, [±10]2, [±20]2, [±40]2, 
[±50]2, [±70]2, [90]4 lay-ups. Since elasticity in the main axes of the layer orthotropy - moduli ,  
and Poisson's ratio 

1E 2E

12ν  are the instantaneous characteristics of the layer. Elasticity characteristics of the 
unidirectional layer turn out to be equal to: 1 150E =  GPa, 2 3.95E =  GPa, 12 0.315ν = . Shear modulus 

 GPa and needs to be corrected to take into account the rheological properties. 12 2.39G =
Creep is traditionally described by power, exponential or linear combination of exponential functions 
[1,2,5,8]. Abel's operator belongs to power function for creep decribing. It was established [1] that 
Rabotnov fraction exponential function is the resolvent of Abel's operator. Power and exponential 
functions are special cases of Rabotnov fraction exponential function [1]. 
For describing viscoelastic properties of the unidirectional layer under shear in (1) Abel's operator was 

chosen: K kIα
∗ = ∗ , the kernel is ( ) ( )1

tI t
α
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=
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, 1 0α− < < . Recalculated value of the shear modulus 

obtained on long-term test data of [±40]2 turned out to be equal to 3.62 GPa and the values of Abel's kernel  
parameters are the following: 0.9α = − , 1.0465k =  min-(1+α). Rabotnov fraction exponential function is 

equal to: ( )
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In correspondence with the scheme of the matrix resolvent we can extract the relation for compliance 
component (7) 

(( 0.90.05505 1 .897 1.014xxs ∗
−= + Ω − )) .  (11) 

The expression for long term (relaxation) modulus for [±40]2 lay-up we can get using inverse of Rabotnov 
fraction exponential function (9) 
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Use the asymptotical property of Rabotnov fraction exponential function shows that ( ) 1
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, then the asymptotical value of the modulus is  MPa, hence the change of the modulus 
is about 47%. 
t →∞ 9.64xE∞ =

The relation for Poisson's ratio (10) in this case can be written 
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changes from 1.11 to 1.12 that is negligibly small. 
It is important to note that in absence of time dependent properties the hereditary constitutive equations 
degenerate into the relationships of anisotropic elasticity. 
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