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Abstract.  Thermal  response  of  multilayer  objects  to  an  arbitrary  variation  of 
temperatures  of  the  ambient  air  are  considered  in  terms  of  the  step-response 
solutions  (STS’s).  A  procedure  of  calculation  STS’s  with  use  of  fast  Fourier 
transform is described. A method of determination of STS’s of multilayer objects in 
working conditions in the case of arbitrary varying temperatures of the ambient air is 
considered. An application of the developed technique to calculation of STS’s of a 
model 3-layer object is demonstrated. 

1. Introduction 

One of the important tasks of nondestructive testing (NDT) in building construction and 
material  engineering is a determination of thermal characteristics of materials of objects 
under investigation.  A wide class of investigated  objects  has a  multilayer  structure,  for 
example,  in  building  construction  all  types  of  walls  of  buildings  can  be  considered  as 
multilayer objects. Thermal NDT of this kind of objects leads to the solution of the inverse 
problem  of  nonstationary  heat  conductivity,  that  is  the  determination  of  thermal 
characteristics  (specific  heat,  density  and  thermal  conductivity)  of  materials  of  layers 
constituting the object by means of examination of thermal response of the object.

A variety of methods allowing determination of heat-transfer properties of an object 
concerns  the  thermal  response  of  the  object  to  the  ambient  temperature  variation  of  a 
specified type. For example, a determination of a (steady-state) thermal conductance (see 
Ref.[1]) of an object requires constant temperatures of the ambient air, while determination 
of the transient thermal characteristics (such as step-response functions (STS’s)) requires 
stepped variation of an ambient air temperature (see Ref.[2,3]).

Nevertheless,  frequently a thermal  NDT deals  with situations  when one can not 
provide a specific  regime of heat conductivity in object as, for example,  in the case of 
thermal NDT of walls of a building, when one cannot control a temperature of the outdoor 
air. In this case the plausibility functional approach (see Ref.[4,5]) was proved to provide 
satisfactory results in a wide range of time dependencies of ambient air temperatures. The 
thermal  characteristics  of  the  layers  are  determined  through  the  minimization  of  the 
functional,  which  can  be  performed  only  numerically.  In  practice,  the  only  one 
characteristic is determined with numerical minimization procedure (as a rule, this is the 
thermal conductivity of the insulator layer, which mainly affects the thermal properties of 
the  whole  wall).  All  other  characteristics  are  set  equal  corresponding  design  values. 



Therefore, the approach loses the efficiency in cases when a large number characteristics 
are unknown due to substantial increasing numerical efforts. 

On the other hand, thermal response of multilayer objects to an arbitrary variation of 
temperatures of the ambient air can be considered in terms of three STS’s. These solutions 
are heat fluxes through object surfaces with temperatures of air near the object's surfaces 
varying as a step-function of time.  STS’s of the object provide information about heat-
transfer coefficients of the surfaces of the object, its thermal conductance and characteristic 
period of thermal inertia of the object. Moreover, it is in principle possible to determine the 
structure of the object analyzing its STS’s. In-use investigation of the object does not allow 
direct determination of the STS’s because it is impossible to provide stepped variation of 
the ambient temperature in time. This situation takes place in NDT of buildings. 

In the paper we present an approach to determination of STS’s of multilayer objects 
in the case of arbitrary varying temperatures of the outside ambient. The approach is based 
on  the  minimization  procedure  analogous  to  that  in  plausibility  functional  approach. 
However, in the new approach the minimization is accomplished analytically, thus avoiding 
increasing numerical efforts. 

The paper is organized as follows. In Sect. 2 we present a review of the approach to 
thermal response calculation with use of STS’s. In Sect. 3 we describe the calculation of 
STS’s by means of fast Fourier transform (FFT). In Sect. 4 we consider a determination of 
STS’s  of  multilayer  objects  in  working  conditions  in  the  case  of  arbitrary  varying 
temperatures  of the ambient  air.  In Sect.5 an application of the developed technique to 
calculation of STS’s of a model 3-layer object is demonstrated. The paper ends with Sect.8 
where main features of the approach are discussed.

2. Step-response solutions 

Consider a one-dimensional heat conduction problem in a multilayered object of thickness 
L , when the heat conductivity  λ , specific heat  c  and density  ρ  are piecewise-constant 
functions of coordinate z :

2

2

( , ) ( , )( ) ( ) ( )T z t T z tz c z z
t z

ρ λ∂ ∂=
∂ ∂

, (1)

with boundary conditions

( ) ( )(1) (2)
1 2

0

( , ) ( , )(0, ) ( ) , ( ) (0, )
z z L

T z t T z tT t T t T t T t
z z

α α
= =

∂ ∂= − = −
∂ ∂ , (2)

where  iα  are heat-transfer coefficients of the left ( 1i = ) and right ( 2i = ) surfaces of the 
object (located at points 0z =  and z L= , respectively), and ( ) ( )iT t - are temperatures of the 
ambient air near the corresponding surfaces. 

Let the temperature of air near the left boundary vary as a step function of time: 
(1) ( ) ( )T t t= Θ , (2) ( ) 0T t = , (3)

where ( )tΘ  is a unit Heaviside step function. We will denote the corresponding heat flux 
through the left surface as (11) ( )Q t  and through the right surface as (21) ( )Q t . If we consider 
the step variation of the temperature of air near the right surface,

(1) ( ) 0T t = , (2) ( ) ( )T t t= Θ , (4)
we will calculate another heat flux through the right surface (22) ( )Q t . The heat flux through 
the  left  surface  (12) ( )Q t  is  equal  in  magnitude  to  (21) ( )Q t  but  has  an  opposite  sign, 

(12) (21)( ) ( )Q t Q t= − (see Ref.[2]). Functions (11) ( )Q t , (21) ( )Q t  and (22) ( )Q t  are called STS’s. 



They  provide  information  about  heat-transfer  coefficients,  (11)
1 (0)Qα =  (22)

2 (0)Qα = − , 
and the thermal conductance K , (11) (21) (22)( ) ( ) ( )K Q Q Q= = = −Ґ Ґ Ґ . 

Thermal response of a multilayer object to an arbitrary variation of temperatures 
(1) ( )T t  and (2) ( )T t , namely the heat fluxes through the left and right surfaces,: (1) ( )I t  and 
(2) ( )I t , respectively, can be expressed through the STS’s:
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Moreover,  it  is  in  principle  possible  to  determine  the  structure  of  the  object 
analyzing its STS’s.

3. Calculation of STS’s of multilayer object with use of FFT

As a rule, direct measurements of temperatures of ambient air with use of industrial sensors 
provide values of temperature at consecutive moments of time. Thus, we have to replace 
the continuous operation of integration in Eqs. (5) and (6) by an operation with discrete set 
of values of (1)T  and (2)T . 

Consider the temperature history (1) ( )T t  and (2) ( )T t  measured at moments of time 
( 1)jt t j= ∆ −Ч , with  1...j N= , where  N  is a total number of measurements and t∆  is a 

time interval between consecutive measurements. We will use a notation  ( ) ( ) ( )j jT T tα α= , 
where 1,2α = . 

In order to calculate heat fluxes through the surfaces of the object consider ( )
jT α as a 

column-vector ( )αT  and apply FFT to ( )αT :
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where symbol ґ  stands for matrix multiplication.
In order to interpolate the temperature histories  (1) ( )T t  and  (2) ( )T t  at whole time 

line we will use the corresponding Fourier series:
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function  (8)  is  quite  reasonable  because  the  Fourier  series  is  a  smooth  function  and it 
satisfies the condition: ( ) ( ) ( )j jT T tα α= . Furthermore, the expansion (8) allows us to utilize 
the power of Fourier technique in analysing thermal response of the object.  

It follows from Eq. (8) that the heat fluxes through the left and right surfaces at 
moment jt , (1)

jI  and (2)
jI  respectively, are given by:
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where symbol Д  stands for direct (elementwise) multiplication of two vectors. In Eq. (9) 
component ( )

k
α βχ  of the vector ( )α βχ  is an (complex) amplitude of the heat flux through the 



surface  α  ( 1α =  for the left surface and  2α =  for the right surface) in the case when 
( )( )

1( ) exp ( )kT t i t tβ ω= − −  and the temperature  of air  near  the opposite  surface is  equal 
zero. For brevity, here we will omit the details of calculation of ( )

k
α βχ , which can be found 

in Ref[7]. 
Making use of Eqs.(6)-(8) we can readily calculate STS’s. First, we have to chose 

the time interval t∆ . As a rule, t∆  is chosen equal time interval between the consecutive 
measurements  of  the  temperature  histories  which  have  to  be  analyzed  with  use  of  the 
STS’s. Second, we have to choose the period of time Τ  within which the STS’s have to be 
calculated. As a rule, the period of time should be few times greater than the period of 
thermal inertia of the object inτ . 

In order to calculate, for example,  (11) ( )Q t , we have to define the time moments 
( )1 ,jt j t= − ∆  where 1...2j N=  with T/N t= ∆ , and the temperature histories:
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(2) 0jT = , 1...2j N= . (11)
Substituting Eqs. (10) and (11) into Eqs. (7)-(9) we can calculate vectors  (1)I . Obviously 
the STS (11) ( )Q t  is defined by the elements of (1)I :

(11) (1)( ) , 1...j jQ t I j N= = . (12)
STS’s (21) ( )Q t  and (22) ( )Q t  are calculated in completely analogous manner. 

Consider situation when we know the STS’s (11) ( )jQ t , (21) ( )jQ t  and (22) ( )jQ t , and 

the temperature histories (1)
jT  and (2)

jT , where  1...j N= , and we need to calculate the heat 
fluxes through the surfaces of the object. First, we will consider the temperature histories 

( )
jT α  as a periodic sequence with period N . Let us construct a sequence with period 6N : 
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where jH  is a periodic sequence with period 6N :
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Obviously,  ( ) ( )
j jT Tα α=  for  1 ...2j N N= − ,  therefore,  the  heat  fluxes  at  moments 

( )1 ,jt j t= − ∆  where 1...j N= , are given by
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where ( )
jQ α β  is a periodic sequence (period 6N ):
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4. Determination of STS’s in the case of arbitrary temperature histories 

The situation which frequently takes place in the practice of NDT is that multilayer object 
under  investigation  can  not  be  placed  inside  the  climatic  chamber  and  subjected  to 



specifically varying temperatures of ambient air. In this section we consider a method of 
determination of STS’ of multilayer object in the case of arbitrary varying temperatures of 
ambient air. 

Suppose we know a temperature history of ambient air ( )
jT α , 1, 2, 1...j Nα = = , and 

heat fluxes through the surfaces of the object  ( )
jI α .  The total  duration of measurements 

( 1)m t Nτ = ∆ −  should be few times greater than the period of the thermal inertia of the 
object inτ . Let us also chose the time moment *jt  which is about two times greater than inτ . 
The values of heat fluxes after  *jt  almost do not depend on the initial distribution of the 
temperature inside the object.

In order to determine STS’s let us construct approximate STS’s  ( )
jQ α β  which are 

linear combination of some (defined) sequences ( )
,k jf α β  :
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where ( )
k

α ββ are some (unknown) coefficients, and K  is (unknown) thermal conductance of 
the  object.  There  are  in  general  no  limitations  on  the  choice  of  sequences  ( )

,k jf α β .  An 

example of choice of ( )
,k jf α β  is demonstrated in Sect.5. 

Our goal is to choose the values of ( )
k

α ββ  to minimize the discrepancy between the 
true STS’s ( )

jQ α β  and the approximate sequences ( )
jQ α β . In order to do this let us calculate 

the heat fluxes ( )
,j kI α β  corresponding to the basic sequences ( )

,k jf α β . Procedure of calculation 

of ( )
,j kI α β  is described in Sect.3(see Eqs. (13)-(16)). 

Let us introduce three ( *)N j M− ґ  matrices (11)I , (21)I  and (22)I  with elements:
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a (column) vector β  of length 3 1M +  with elements:
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a (column) vector δT  of length ( *)N j−   with elements:
(1) (2)

* *j j j j jT T Tδ + += − , 1...( *)j N j= − (20)
and a (column) vector I  of length 2( *)N j− with elements:
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If the approximated sequence (17) gives the exact values for true STS’s than the 
vector I  has to coincide with the vector ( )cI  defined by

( )c = Λ ґIβ , (22)
where Λ  is a 2( *) 3N j M− ґ  block-matrix:



(11) (21)
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In  practice  due  to  errors  of  approximation  (17)  and  errors  of  measurements  of 
temperatures and heat fluxes we can only require a minimal value of the discrepancy:

2( )( ) ( )cD = −β I β I (24). 

Thus, the unknown parameters β  are given by:
-1tr trй щ= Λ Λ Λл ыβ I , (25)

where the superscript tr  denotes the operation of transpose.

5. Example of application of the developed formalism

In this section we demonstrate the application of the developed technique to determination 
of STS’s of a model 3-layer object. Thermal characteristics of materials constituting the 
object a listed in Tab. 1. 

Layer material Heat conductivity
Wt/(m °C)

Density
kg/m3

Specific heat
J/(kg °C)

Thickness
mm

Reinforced concrete 2.04 2400 840 70

Insulator 0.4 70 1470 100

Ceramic tile 1.28 2800 840 30

Table 1. Thermal characteristics of layers of the model 3-layer object.

We have simulated the temperature histories of the ambient air: the time interval 
between the consecutive measurements was set equal  300t∆ =  sec., the total duration of 
measurements  10Τ =  days and the period of time for the calculation of the discrepancies 

*[ ... ]jt T , where * 4jt =  days. The following formulas were used for simulation:
9
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where  { }(1) 0.5,0.8,0.9,1,1.3,1.5,2,3,6nτ =  days,  and  { }(2) 0.5,0.7,0.8,1,1.2,1.5,2,3,6nτ =  
days. Heat fluxes corresponding to these temperature histories were calculated as described 
in Sect.3. The temperature histories and heat fluxes are presented at Fig. 1.

For the determination of STS’s on the basis of simulated histories (see Fig. 1) with 
the technique described in Sect. 4. we have used the following sequences  ( )

,k jf α β ,  where 
1...6k = :

( )( ) ( ) ( )
, F , ,k j j kf tα β α β α β= y x , (28)

where function  F  is a (cubic) spline interpolation of discrete function defined by set of 
values ( )

k
α βy  calculated at points ( )α βx  to moments jt . 



We use the following values for components of ( )α βx  and ( )
k

α βy :
(11) (22) {0,0.1,0.2,0.3,0.6,0.8,1.2}= =x x , (29)
(21) {0,0.05,0.1,0.2,0.4,0.7,0.9,1.2}=x , (30)

(11) (22)
, ,
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0,j k j k

j k
y y

j k
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, (31)

(21)
,

1, 1
0, 1j k
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y

j k
= −м

= н −№о
. (32)

Figure 1. Temperature (a) and heat fluxes (b) simulated with use of Eqs. (26) and (27). 

Thus, the unknown parameters ( )
k

α ββ  are the set of values of the STS’s calculated at 
points  ( )α βx .  These  parameters  were  calculated  with  use  of  the  technique  described  in 
Sect. 4. The true STS’s for the object and the approximated sequences are plotted at the 
Fig. 2 (a). 

Figure 2. Panel a: exact STS’s (solid curves) and determined values of the STS’s (circles) calculated at points 
( )α βx . Panel b: quadratic discrepancies ( )Q α βδ  between the exact STS’s and the approximate expressions 

( )
jQ α β  and also the discrepancy ( )D β , where β  are the determined parameters,  plotted as a functions of 

scaling factor. 

Determined values of parameters  β  provides a satisfactory approximation of the 
STS’s: the relative discrepancy between the exact STS’s and the approximate sequences 
does  not  exceed  1  %  for  moments  of  time  2.5jt >  hours.  Within  the  time  interval 



2.5jt <  hours the relative discrepancy substantially increases and for the STS (22) (0)Q  the 
discrepancy is about 7 %. The (22) ( )Q t  at small times t  has a very large derivatives of all 
orders, therefore the (cubic) spline interpolation results in essential errors of approximation 
of  (22) ( )Q t  in  this  time  region.  However,  the  error  of  interpolation  can  be reduced by 
increasing the number of points for interpolation at this region.

We  have  chosen  the  points  for  interpolation  ( )α βx  to  provide  a  precise  spline 
interpolation  for the STS’s.  The points  of  ( )α βx  are not uniformly distributed:  they are 
concentrated,  primarily,  near  the  region  with  a  large  second  derivative  of  STS’s.  The 
different  multilayer  object  have  similar  STS’s:  the  most  essential  difference  is  in  the 
characteristic period of thermal inertia of objects. This means that the most appropriate set 
of points for interpolation ( )α βx  for other objects differs from ( )α βx  by a scale factor γ :

( ) ( )α β α βγ=x x . (33)
We have performed the calculations of parameters β  for different scale factors γ , namely, 
we have used the vectors ( )α βx  instead ( )α βx  in Eqs. (29) and (30). The discrepancies for 
different values of scale factor γ  are plotted in Fig.2 (b). 

The position of the minimum of the discrepancy ( )D γ  does not coincide with that 
of STS’s. The reason is in errors of the spline interpolation. The situation can be improved 
by  increasing  the  number  M  of  points  for  interpolation.  Nevertheless,  as  we  have 
mentioned above, the discrepancy between the true STS’s and the approximate sequences 
are sufficiently small even for 6M = . 

6. Discussions and conclusions

Generally, the technique developed in the paper can be considered as an extension 
of  the  plausibility  functional  approach on the  case  when the  internal  structure  and the 
thermal  characteristics  of  the  layers  of  the  object  is  a  priori  unknown.  The  unknown 
parameters  β  are  determined  from  the  procedure  of  minimization  of  the  quadratic 
discrepancy  between  measured  heat  fluxes  and  heat  fluxes  calculated  on  the  basis  of 
temperature histories. The essential difference is that in the developed technique we express 
the discrepancy through the parameters β  analytically, so we can analytically minimize the 
discrepancy (see Eq. (25)).

In  general,  there  are  no  limitations  on  the  choice  of  ( )
,k jf α β .  In  the  example  of 

application of the technique we have used the spline functions as the basis of expansion 
(17) because we think that this functions provides simple and universal approximation of 
STS’s.  The expansion results  in  errors  at  small  times  jt ,  which  can be reduced if  we 
increase the number of the interpolation points ( )α βx . On the other hand, an increase of M  
requires  increasing  the  period  of  measurements  to  provide  enough  information  for 
determination of the parameters  β .  In general,  the number of the Fourier  harmonics in 
temperature histories has to be greater than the number of determined parameters. In the 
example demonstrated in Sect.5 the increasing of the number of parameters 8M =  leads to 
physically meaningless results (STS’s oscillated at small times).

There are two types of errors of determination of β . First one is errors due to the 
initial  distribution  of  the  temperature  inside  the  object.  The  initial  distribution  of  the 
temperature affects the heat fluxes through the surfaces only at the time interval which is 



comparable  with  the  period  inτ  of  thermal  inertia  of  the  object.   Therefore,  the 
corresponding errors can be estimated as

( )exp /in m inτ τ∆ ≈ −β β . (34)
In our example we have used 4mτ =  days which are approximately 4 times greater than inτ , 
therefore we could neglect this type of errors.

Second one is errors due to the random errors of measurements of temperatures and 
heat fluxes. This type of errors strongly affects the determined values of ( ) ( )Q tα β  at small 
times t . The corresponding errors can be estimated as:

r
T
T

δ∆ ≈
< ∆ >

β β , (35)

where,  Tδ  is an error of measurements and T< ∆ >  is a mean modulus of the difference 
between the consecutively measured temperatures. This type of errors can be reduced by 
averaging the measured data:

1
/r

avT t
∆ ∝

∆
β , (36)

where  avT  is  an averaging  period.  It  should be noted,  that  averaging  results  in  loss  of 
information about STS’s at period of time [0... ]avT .

To summarize,  we have developed technique for determination of the dynamical 
thermal properties of multilayer object. The thermal characteristics a determined with use 
of the procedure of minimization of the discrepancy between the measured heat fluxes and 
that calculated on the basis of the measured temperature histories. The technique does not 
require a priori data about the internal structure of the object and can be applied in a wide 
range of temperature histories. The typical error of determination of STS’s is less than 1%.
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